Search results for "Peak detection"
showing 4 items of 4 documents
Automatic program for peak detection and deconvolution of multi-overlapped chromatographic signals
2005
Several interlinked algorithms for peak deconvolution by non-linear regression are presented. These procedures, together with the peak detection methods outlined in Part I, have allowed the implementation of an automatic method able to process multi-overlapped signals, requiring little user interaction. A criterion based on the evaluation of the multivariate selectivity of the chromatographic signal is used to auto-select the most efficient deconvolution procedure for each chromatographic situation. In this way, non-optimal local solutions are avoided in cases of high overlap, and short computation times are obtained in situations of high resolution. A new algorithm, fitting both the origin…
Design and implementation of a data acquisition system for r peak detection in electrocardiograms
2018
Automatic Biological Cell Counting Using a Modified Gradient Hough Transform
2017
AbstractWe present a computational method for pseudo-circular object detection and quantitative characterization in digital images, using the gradient accumulation matrix as a basic tool. This Gradient Accumulation Transform (GAT) was first introduced in 1992 by Kierkegaard and recently used by Kaytanli & Valentine. In the present article, we modify the approach by using the phase coding studied by Cicconet, and by adding a “local contributor list” (LCL) as well as a “used contributor matrix” (UCM), which allow for accurate peak detection and exploitation. These changes help make the GAT algorithm a robust and precise method to automatically detect pseudo-circular objects in a microscop…
A multi-scale approach for testing and detecting peaks in time series
2020
An approach is presented that combines a statistical test for peak detection with the estimation of peak positions in time series. Motivated by empirical observations in neuronal recordings, we aim at investigating peaks of different heights and widths. We use a moving window approach to compare the differences of estimated slope coefficients of local regression models. We combine multiple windows and use the global maximum of all different processes as a test statistic. After rejection, a multiple filter algorithm combines peak positions estimated from multiple windows. Analysing neuronal activity recorded in anaesthetized mice, the procedure could identify significant differences between …